The Charge Distribution in Amides and Thioamides by Nuclear Quadrupole Coupling, Dipole Moments and Electronic Structure Calculations*

Michael H. Palmer^a and Paul Sherwood^b

^a Dept. of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland

Z. Naturforsch. 51 a, 460-478 (1996); received February 1, 1996

The nuclear quadrupole coupling constants from microwave spectroscopy (MW) and quadrupole resonance (NQR) for amides and thioamides are discussed in relation to Hartree-Fock calculations with and without Moller-Plesset correlation effects. The view that the larger dipole moments from thioamides than the corresponding amides is a function of enhanced resonance in the former is discussed and (in effect) confirmed by the present procedures. The principal mechamism seems to be the push/pull π/σ effects of the N atom with respect to the CO and CS groups, with S being a better σ -donor than O; however, the effect is still present with formamidine where no electronegativity effects are important, so the overall effect is the 2,1,1 π -electron contribution to the allylic system from N, C, O(S). The use of localised MO's and NO's is described, and the centroid positions are discussed in relation to the polarity of the bonds. The LMO's largely truncate the contributions to each NQCC to the three attached bonds (or 2 bonds + a lone pair orbital at O or S), as is used in the Townes-Dailey procedures. More distant LMO's generally contribute < 0.05 a. u. to the EFG, simplifying the analysis. The effects of O(or S)-protonation of urea and thiourea is discussed.

Introduction

We present a number of new theoretical studies on amides and thioamides using single molecule studies with large basis sets including electron correlation at the MP2 level. These studies concentrate on simple amides and thioamides, and in particular with formamide and thioformamide, acetamide, urea and thiourea and their methylated derivatives. The purpose of the investigation is to reconsider the anomalous ¹⁴N quadrupole coupling in these molecules. The background to this matter is as follows. It is generally accepted that the electronegativity of oxygen is greater than that of sulphur; some typical values for elements relevant to the present discussion are: H 2.1, C 2.5 N 3.0, O 3.5 and S 2.5 all from the Pauling scale [1], but other scales exist with similar interrelationships. Each of the above molecules has a ¹⁴N centre and either a ¹⁷O or ³³S centre, all being quadrupolar. The gas phase and solid state 14N

nuclear quadrupole coupling constants (NQCC, χ_{ii}) are found by microwave spectroscopy (MW) and nuclear quadrupole resonance (NQR), respectively. The NQCC's are second rank tensors with the conventions

$$|\chi_{zz}| \ge |\chi_{yy}| \ge |\chi_{xx}|,\tag{1}$$

$$\chi_{xx} + \chi_{yy} + \chi_{zz} = 0, \tag{2}$$

in the first defining the magnitude order and the second is the Laplace relationship. χ_{zz} is normally defined as the 'principal' value of the NQCC; we use these conventions here.

The MW data will normally lie in the inertial axis (IA, ii = aa, bb, cc) system, requiring a knowledge of the off-diagonal elements χ_{ij} in order to obtain the principal EFG values (ii = xx, yy, zz), which are obtained directly in NQR. The principal NQCC (χ_{zz}) at ¹⁴N in formamide [2, 3] is -3.848 ± 0.004 MHz while that in thioformamide is thought to be -4.2 ± 0.6 MHz or alternatively -3.7 ± 0.4 MHz [4], a poorly determined comparison. However, the NQCC for urea (-3.51) [5 - 8] is higher than thiourea (-3.12MHz) [9], and this has been attributed to higher resonance in the latter than in the former [10]. It was assumed that the

 Presented at the XIIIth International Symposium on Nuclear Quadrupole Interactions, Providence, Rhode Island, USA, July 23-28, 1995.
 Reprint requests to Dr. M. H. Palmer.

0932-0784 / 96 / 0500-0460 \$ 06.00 © – Verlag der Zeitschrift für Naturforschung, D-72072 Tübingen

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

^b CLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, England

higher $\chi_{\rm E}$ at ¹⁴N implies higher localisation. These results for amides and thioamides are apparently quite general and have become classic cases for use of the Townes and Dailey analysis with hybrid bonds [10]. We have previously discussed some of the differences between the gas-phase and solid state results for these molecules [11]. The change of phase from gas phase to polycrystalline solids does not change the orientation of the NQCC's [11]. Very detailed investigations of the crystalline field on the actual charge distribution in amides, as opposed to models of the charge, have been reported [12].

The higher electronegativity of O than S should make the amide O a better electron acceptor than S of thioamide [4]. The dipole moments for formamide and thioformamide are 3.71(6) and 4.01(3) D, respectively, [4] with the same dipole moment order in acetamide and thioacetamide from solution measurements [13]. Both imply higher S polarisation than O. Also, ¹H NMR studies for the hindered NH₂ rotation barriers [14, 15] show that the thioamides have higher barriers than the corresponding amide by about 8.5 kJmol⁻¹. However, the NC bonds in gaseous HCONH₂ and HNSNH₂ are effectively identical in length, implying equal CN bond order [4].

Thus we reconsider the charge distributions in amides and thioamides, ureas and thioureas and their methylated derivatives. In particular we will analyse the contributions to the dipole moment and the electric field gradient (EFG, q_{ii}) tensor and charge distribution on both a molecular orbital set of contributions, and a natural orbital set of increments from the Moller-Plesset (MP2) correlated wave-functions. The MP2 correlation effects are qualitatively similar to the effects of 'singles and doubles CI' (SDCI), but the MP2 studies include (a) full geometric relaxation leading to the correlated equilibrium geometry, and (b) MP2 includes all electrons. In conventional SDCI, the calculation is normally performed as a refinement to a wave-function at the SCF equilibrium geometry, and usually a sub-set of the electrons is included (such as truncation to an all-valence electron set rather than the full set).

1. Methods

The SCF wave-function is a single determinant which consists of a set of doubly occupied molecular orbitals (DOMO's) and virtual MO's (VMO's); each occupied MO pair make a contribution to the

total dipole moment (DM) or EFG. Thus by consideration of each MO, we can interpret the effect of the π -electrons separately, hence addressing the question of resonance contributions. A feature of the MP2 calculations is that the overall electronic wave-function (Ψ) is expanded beyond the SCF level (Ψ_0) by further determinants (Ψ_1 , etc.) containing 2-electron replacements of the SCF-MO's by the VMO's. The VMO's (the 'anti-bonding' set) play no role in SCF calculations but are included directly in the MP2 calculation as weighted terms through the density matrix. Summation of the contributions for each basis function from all determinants leads to the 'Natural orbitals' (NO's), with properties which can be analysed by electronic population or other methods. Thus the final MP2 natural orbitals contain contributions from all the MO's, but with high occupation numbers from the SCF-MO's and progressively lower contributions from the virtual orbitals (VMO's). As an example of the differences of atomic populations from MO's and NO's, the total π -electrons, strictly 4.000 e for SCF calculations on formamide, become slightly different (usually larger by incorporation of π^* MO's). This leads to some rounding errors in the population analysis below.

All of these studies use the Hartree-Fock Method and involve all electrons in the system under consideration, and the full Hamiltonian operator of the non-relativistic Schrödinger equation is used. The only empirical parameters which are involved are the atomic orbital basis set descussed below. The first stage was to obtain the equilibrium geometry with the basis set and methodology (SCF or MP2); then the dipole moment and EFG components from the resulting wave-functions was evaluated.

The dipole moment components (\hat{r}) and EFG tensor elements $(q_{ii}, \text{ and } q_{ij}, \text{ where } i, j \text{ are } x, y, \text{ or } z)$ are obtained from the electronic wave-function by means of the equations

$$\hat{r} = \langle \Psi_0 \mid r \mid \Psi_0 \rangle, \tag{3}$$

$$q_{zz} = \langle \Psi_0 \mid (3z^2 - r^2) / r^5 \mid \Psi_0 \rangle,$$
 (4)

$$q_{xy} = \langle \Psi_0 \mid (-3xy/r^5 \mid \Psi_0 \rangle. \tag{5}$$

The nuclear components are *added*, giving the resultant 'total' values for all terms. The EFG's are converted to NQCC's (χ_{ij}) by means of the equation

$$\chi_{ii} = e^2 Q_{\rm Z} q_{ii} / h a_0^3 = 234.96 \, Q_{\rm Z} q_{ii} \tag{6}$$

Table 1. Equilibrium Structures for Amides and Thio-amides a,b

Formamic	de (Cs s	vmm	etry)			
Bonds (Å)	(-3 -	J	3/			
Method	НС		CO	CN	NH	NH,
DZ/SCF	1.081		1.2251	1.360		
TZVP/SCF	1.091		1.1880	1.349		
TZVP/MP2	1.098		1.2158	1.359		040 1.001:
Microwave ^c	1.098	3	1.219	1.352		016 1.001
Angles (°)						
Method	H	CO	OC	CN	CNH_c	CNH_t
DZ/SCF	12	21.72	12	4.64	120.49	120.49
TZVP/SCF	12	22.13	12:	5.03	119.42	121.20
TZVP/MP2	12	22.90	12	4.87	119.26	121.3
Microwave ^c	12	22.5	12	4.7	118.5	120.0
Thioform	amide (C _S sy	mmet	·y)		
Bonds (Å)						
Method	HC		CS	CN	NH	c NH _t
DZ/SCF	1.074	4	1.6780	1.341	0 0.99	0.9949
TZVP/SCF	1.078	88	1.6418	1.324	4 0.99	926 0.9926
TZVP/MP2	1.086	5	1.6379	1.346	0 1.00	058 1.003
MWave ^d	1.096)	1.6262	1.358	2 1.00	1.006
Angles (°)						
Method	H	CS	SC	N	CNH_c	CNH _t
DZ/SCF	12	20.12	120	5.29	120.85	120.8
TZVP/SCF	12	20.52	120	5.41	120.61	120.6
TZVP/MP2		21.87		5.65	119.39	
MWave ^d	12	26.6	12:	5.3	119.4	120.3
N-Methy	l forma	mide	$(C_S syn$	mmetr	y)	
Bonds (Å)						
Method	HC_1	C_1O	C_1N	NH,	NC ₂	C ₂ H _{ip} C ₂ H _{oo}
DZ/SCF		1.2290	1.3554	0.9932		.0794 1.0804
TZVP/MP2	1.0984	1.2203	1.3552	1.0034	1.4504 1	.0848 1.0869
Angles (°)						
Method	HCO	OCN	CN	H, CN	NC NC	H _{ip} NCH _{oo}
DZ/SCF	121.55	124.				8.80 110.68
TZVP/MP2	123.05	124.				3.72 110.59
TZVP/MP2	123.05	124.2	29 118	.87 12	0.88 108	3.72 110.59

via the appropriate atomic quadrupole moment (Q_Z) for ¹⁴N, ¹⁷O or ³³S, as described below.

1.1. Basis sets and the Atomic Coupling Constants (Q_7)

The calculations were made with the **GAMESS-UK** programme [16]. We used Huzinaga/Dunning double zeta(DZ) [17, 18] and triple zeta with polarisation (TZVP) bases [19]. These are comparable with our previous work [20, 21] and generally give reliable values for both structural features in the single molecule calculations and the NQCC when compared with MW data. The TZVP basis for C/N/O atoms, for example, contains 20 functions of spd character, with H represented by sp functions. The S atoms had (14s10p) sets from Huzinaga contracted to 7s4p1d.

Table 1 (cont).

N,N-Dim	ethyl fo	ormam	ide (C	s sym	metry)	
Bonds (Å)							
Method	HC	CO	CN	NC_c	NC_t	CH_{ip}	CH_{oop}
DZ/SCF	1.0824	1.2310	1.3534	1.4610	1.4655	5 1.0798	1.0818
TZVP/MP2	1.0988	1.2231	1.3555	1.4479	1.4522	2 1.0860	1.0888
Angles (°)							
Method	HCO	OCN	CNC	c CN	IC, NO	C_cH_{ip}	NC_cH_{oop}
DZ/SCF	121.15	124.52	118.	76 121			110.74
TZVP/MP2	122.86	124.49	118.0	06 122	2.32 10	8.99	110.75
Acetamic	de (Cs s	ymme	try)				
Bonds (Å)							
Method	$H_{ip}C$	$H_{oop}C$	CC	CO	CN I	NH _c	NH,
DZ/SCF	1.0801	1.0804	1.513	1.2321	1.3650 (0.9946	0.9914
TZVP/SCF	1.0784	1.0845	1.5130	1.1936	1.3563 (0.9919	0.9893
TZVP/MP2	1.0876	1.0855	1.513	3 1.2209	1.3656	1.0039	1.0006
Elect.Diff.e	1.124(av)	1.124(av	1.519	1.220	1.380	1.022(av)	1.022(av)
Neut.Diff.f	1.125	1.119	1.513	1.250	1.337	1.036	1.036
3-21G ^f	1.085	1.080	1.516	1.216	1.358 (0.997	0.994
Angles (°)							
Method	CCH_{ip}	CCH	oon C	CO	OCN	CNH_c	CNH_t
DZ/SCF	112.84		- I	12.84	121.56	118.59	122.34
TZVP/SCF	109.02			22.88	122.10	118.60	122.4
TZVP/MP2				22.52	122.24	118.25	122.59
Thioacet	amide (C _S syr	$_{ m nmetr}$	$\mathbf{y})$			
Bonds (Å)							
Method	$H_{ip}C$	$H_{oop}C$	CC	CS	CN	NH_c	NH_t
DZ/SCF	1.0835	1.0792	1.5115	1.6999	9 1.342	-	
TZVP/SCF	1.0849	1.0806	1.5074				
TZVP/MP2	1.0898	1.0854	1.5088	1.6489	9 1.349	0 1.0051	1.0035
Angles (°)							
Method	CCH_{in}	CCH	oon C	CS	SCN	CNH_c	CNH,
DZ/SCF	111.98			21.74	122.49	119.60	122.19
TZVP/SCF	111.74			22.11	122.38	119.20	122.07
TZVP/MP2	111.86	109.6	64 1	22.77	122.76	119.04	122.00
Urea (C2	ev)						
Bonds (Å)							
Method	C	C	CI	V	NH	C	NH_{t}
DZ/SCF	1	.2363	1.3	3689	0.99	926	0.9912
TZVP/SCF		.1966		3606	0.98		0.9885
TZVP/MP2	1	.2194	1.3	3734	1.00	003	0.9997
Angles (°)							
Method	C	OCN	NO	CN	CN	H_c	CNH,
DZ/SCF	1	22.03	11	5.93		.44	123.31
TZVP/SCF		22.45		5.11		.37	123.50
TZVP/MP2	1	22.75	11	4.50	117	.05	123.80

The principal results are shown in Table 1 (molecular equilibrium structural data), Table 2 (energies, dipole moment summaries and Mulliken orbital populations) and Table 4 (NQCC results and comparison with experimental data). More detailed analysis of the molecular orbital (SCF) and natural orbital (MP2) contributions are shown in Tables 3 and 5 for the dipole moment and EFG results. Early studies of this type are shown in [22] and later papers. In order to

Table 1 (cont).

1,3-Dime	thylure	a (C _{2V})				
Bonds (Å)						
Method	OC	CN	NH,	NC_c	CH_{ip}	CH_{oop}
DZ/SCF	1.2402	1.3701	0.9929			
TZVP/SCF	1.2005	1.3612	0.9901	1.44	59 1.076	7 1.0847
TZVP/MP2	1.2245	1.3757	1.0029	1.44	68 1.083	2 1.0891
Angles (°)						
Method	OCN	NCN	CNH_t	CNC	NCH_{ip}	NCH _{oop}
DZ/SCF	122.39	115.23	119.42	122.2	5 108.43	110.81
TZVP/SCF	122.84	114.32	119.25	122.6	7 108.70	110.86
TZVP/MP2	122.96	114.07	119.67	121.7	3 107.83	111.05
Tetramet	hyl ure	$a(C_S)$				
Bonds (Å)						
Method	OC	CN	NC_t	NC_c	CH_{ip}	CH_{oop}
DZ/SCF	1.2528	1.3832	1.4692	1.4775	1.085(ass)	1.085(ass)
TZVP/SCF	1.2094	1.3707	1.4626	1.4562	1.085(ass)	1.085(ass)
TZVP/MP2	CO	CN_1	CN_2	N_1C_{3c}	N_1C_{4t}	N_2C_{5c}
TZVP/MP2	1.2452	1.3868	1.3896	1.4631	1.4540	1.4588
TZVP/MP2	N_2C_{6t}	$C_{4t}H_{ip}$	$C_{4t}H_{oop}$	$C_{5c}H_{ip}$	$C_{5c}H_{oop}$	$C_{4t}H_{ip}$
TZVP/MP2	1.4533	1.0896	1.0906	1.0849	1.0940	1.0782
TZVP/MP2	$C_{4t}H_{oop}$	$C_{6t}H_{oop}$	$C_{6t}H_{ip}$			
TZVP/MP2	1.0942	1.0933	1.0877			
Angles (°)	OGN	NON	CNC C	N.C	NCH	NCU
Method	OCN	NCN			NCH _{ip}	NCH _{oop}
DZ/SCF	116.92	126.23		16.51	108.5(ass)	108.5(ass)
TZVP/SCF	118.13	123.73		15.62	108.5(ass)	108.5(ass)
TZVP/MP2		OCN ₂	CN ₁		CN_1C_{4t}	CN_2C_{5c}
TZVP/MP2		119.8	113.4		132.80	116.49
TZVP/MP2	120.32	N ₁ CN 122.63	N ₁ C ₂ N ₁ C ₃ 107.9	3c Hip	N ₁ С _{3с} Н _{оор} 111.05	N ₁ C _{4t} H _{ip} 112.81
TZVP/MP2						
TZVP/MP2 TZVP/MP2		op N ₂ C ₅₀ 108.77	7 110.2	5cHoop	N ₂ C _{6t} H _{oop}	$N_2C_{6t}H_{ip}$ 108.40
Thiourea		100.77	110.2	.0	112.17	100.10
Bonds (Å)	(C ₂ V)					
Method	S	C	CN		NH_c	NH,
DZ/SCF		7254	1.3512	,	0.9929	0.9942
TZVP/SCF		6847	1.3369		0.9929	0.9903
TZVP/MP2	-	6642	1.3574		1.0014	1.0028
Angles (°)		0012	1.557			1.0020
Method	\$	CN	NCN		CNH_c	CNH,
DZ/SCF		21.90	116.20)	118.19	123.22
TZVP/SCF		21.96	116.20		118.14	123.22
TZVP/MP2		22.61	114.78		117.79	123.17
	-					

keep the data small, we give details in full for only the smallest cases, taking just the major contributors for the larger cases.

In much of our previous ¹⁴N work [12, 23] we treated the value of $Q_{\rm N}$ as a scaling parameter, using a correlation of EFG (q_{ii}) against χ_{ii} from microwave data, to evaluate the appropriate Q_N . The ¹⁴N correlation constant for the DZ and TZVP bases were 3.5244 (15.00 mb) [24] and 4.0111 MHz/a.u. (17.07 mb). The best current values for $Q_{\rm N}$ 20.1 mb $(4.7227 \,\mathrm{MHz/a.u.}), \,Q_{\mathrm{H}} \,\, 2.860 \,\mathrm{mb}, \,Q_{\mathrm{O}} \,\, -25.58 \,\mathrm{mb}$ and

Table 1 (cont).

0							
Bonds (Å)							
Method SC CN NC _t NC _c CH _{ip}	CH_{oop}						
	1.085(ass)						
TZVP/SCF 1.7227 1.3518 1.4659 1.4692 1.085(ass)	1.085(ass)						
TZVP/MP2 CS CN_1 CN_2 N_1C_{1c} N_1C_{1t}	N_1C_{2c}						
TZVP/MP2 1.6958 1.3796 1.3811 1.4683 1.4637	1.4639						
TZVP/MP2 N_2C_{2t} $C_{1c}H_{ip}$ $C_{1c}H_{oop}$ $C_{2c}H_{ip}$ $C_{2c}H_{oop}$							
TZVP/MP2 1.4600 1.0893 1.0897 1.0826 1.0934							
TZVP/MP2 L _{1t} H _{ip} C _{1t} H _{oop} C _{2t} H _{ip} C _{2t} H _{oop} TZVP/MP2 L ₀₇ 47 L ₀₉ 31 L ₀₉ 23 L ₀₈ 61							
12 TIME TOTAL TOTAL TOTAL							
Angles (°)	v.a.r						
	NCH _{oop}						
	108.5(ass)						
	108.5(ass)						
	CN_2C_c						
12.172 11 120.00 11	120.11						
	N ₁ C _{1t} H _{ip} 113.61						
	$N_2C_{2t}H_{oop}$						
TZVP/MP2 109.51 109.47 109.54 111.86 1	108.39						
O-protonated Urea							
Bonds (Å) and Angles (°)							
Method CO OH CN_1 CN_2 H_{N_1c}	$H_{N_1 t}$						
TZVP/MP2 1.3100 0.9655 1.3231 1.3158 1.0060	1.0066						
H_{N_2c} H_{N_2t} OCN_1 OCN_2 COH	CN_1H_c						
TZVP/MP2 1.0078 1.0053 122.44 114.75 114.11	121.91						
N_1H_t CN_2H_c CN_2H_t NCN							
TZVP/MP2 121.28 118.78 122.60 122.82							
S-protonated Thiourea							
Bonds (Å) and Angles (°)							
Method CS HS CN_1 CN_2 N_1H_c	N_1H_t						
TZVP/MP2 1.7459 1.3381 1.3230 1.3226 1.0051	1.0085						
N_2H_c N_2H_t SCN_1 SCN_2 HSC	CN_1H_c						
TZVP/MP2 1.0070 1.0077 122.88 116.58 95.49	121.88						
CN ₁ H _t CN ₂ H _c CN ₂ H _t TZVP/MP2 121.45 121.10 121.98 120.54							
12 v 1 /1vii 2 121.45 121.10 121.70 120.34							

 $Q_{\rm S}$ -67.8 mb²⁴ (1 barn = 10^{-28} m² = 100 fm²) were used for the present studies.

 $[^]a$ Bond Lengths/Å Bond Angles/° . b H_c is cis and H_t is trans to O or S atom; H_{ip} and H_{oop} are H atoms in the heavy atom planar system and out-of-plane, respectively.

^c E. Hirota, Ř. Sugisaki, C. J. Nielseb, and G. O. Sorensen, J. Molec. Spectrosc. 49, 251 (1974). For vibration-rotation spectral analysis with some further refinements, see R. D. Brown, P. D. Godfrey, and B. Kleibomer, J. Molec. Spectrosc. 124, 34 (1987) and references therein.

^d R. Sugisaki, T. Tanaka, and E. Hirota, J. Molec. Spectrosc. **49**, 241 (1974).

^e M. Kimura and M. Aoki, Bull. Chem. Soc. Japan **26**, 429

G. A. Jeffrey, J. R. Ruble, R. K. McMullan, D. J. DeFrees, J. S. Binkley, and J. A. Pople, Acta Cryst. B36, 2292 (1980).

Table 2 (cont).

Table 2. Energies (a. u.), Charge distributions (e) and Dipole Moments (D).

Moments (D).											
HCONH						Mulliken populations			p_{π} d_{π}		
$HCONH_2$						$H_{\text{oop}}(C_t)$	0.804	0.858	0.004		
T	DZ/SCF	TZVP/SCF				$H_{ip}(C_c)$	0.830	0.863	0.004		
Total energies		-168.99702				$H_{\text{oop}}(C_c)$	0.786	0.842			
Mulliken populations		total	total	p _π	d_{π}	Dipole moments	4.998	4.192			
O C	8.418	8.424 5.820			0.0019	Direction from CN	20.0	24.0			
N	5.725 7.772	7.558			0.0437	bond axis (°) Dielectric	38.0	34.0			
H(C)	0.843	0.934		0.0029		Constant (gas) ^e	3.80				
$H_c(N)$	0.613	0.723		0.0099			5.00				
$H_t(N)$	0.629	0.731	0.731	0.0107	,	CH_3CONH_2		T7VD/CCI	TZVD/A	4D2	
Dipole moment	4.725	4.220 ^b	3.912			Total energies		TZVP/SCF -208.0538			
Stark effect ^a	3.714(6)					Mulliken populations		total	total	p _π	d_{π}
Direction from CN						O		8.425	8.301	* 200	5 0.012
bond axis (°)	40.0	40.0	41.5			C(O)		5.603	5.744		8 0.051
Stark effect ^a	39.6					C(C)		6.397	6.429		
$HCSNH_2$						N		7.566	7.518	1.73	7 0.010
	DZ/SCF	TZVP/SCF	TZVP/	MP2		$H_c(N)$		0.710	0.726	0.010	0
Total energies	-491.51267	-491.62707	-492.13	5886		$H_{t}(N)$		0.727	0.734	0.01	1
Mulliken populations	total	total	total	$p_{\boldsymbol{\pi}}$	d_{π}	Mulliken populations		π_1	π_2	π_3	
S	16.075	16.275		3.357		O		0.006	0.055	0.648	8
C	6.241	5.979		0.900		C(O)		0.076	0.198	0.12	1
N	7.670	7.473		1.655	0.011	C(C)		0.517	0.520	0.000	
H(C)	0.782	0.844		0.003		N		0.046	0.623	0.20	
$H_c(N)$	0.608	0.709		0.009		$H_{oop}(C)$		0.353	0.066	0.00	0
$H_t(N)$	0.624	0.722		0.010		Total Dipole moment		4.194	3.835		
Dipole moment Stark effect ^c	5.285	5.067 ^d	4.220			Stark effect ^a			3.678(3)	
	4.01(3)					Direction from CO bo	nd axis (°)		11.5		
Direction from CN	27.5	40.0	20.5			Stark effect ^a		10			
bond axis (°) Stark effect ^d	37.5 37.5	40.0	39.5			CH_3CSNH_2					
	57.5						DZ/SCF		CF TZVF		
HCONHMe	DZ/SCF	TZVP/MP2				Total energies	-530.5452				
Total energy	-207.90070					Mulliken populations		total	total	p_{π}	d_{π}
Mulliken populations		total p_{π}	d_{π}			S	16.109	16.301		0 1.405	
0	8.440	8.311 1.40		,		C(S)	5.994	5.886		2 0.788	0.051
C	5.732	5.834 0.82				C(C) N	6.542 7.732	6.320 7.487	6.38	4 4 1.737	0.010
N	7.573	7.372 1.67				$H_c(N)$	0.609	0.708		8 0.010	
H(C)	0.843	0.928 0.00)4			$H_{t}(N)$	0.626	0.726		8 0.011	
$H_t(N)$	0.635	0.737 0.00)9			Mulliken populations					
C(N)	6.369	6.255 1.11)		S		π_1 π_2 1.000 0.00	π_3	0.571	
$H(C_{ip})$	0.833	0.870 0.00				C(S)		0.000 0.00		0.081	
$H(C_{oop})$	0.788	0.870 0.00)9			C(C)		0.000 0.56			
Dipole moments	4.787	4.017				N		0.000 0.00		0.347	
Direction from CN						$H_{oop}(C)$		0.000 0.39		0.002	
bond axis (°)	38.7	33.5				Dipole moment		5.470 5.28	31 4.330		
Dielectric	2.02					Dielectricg) (dioxane)	
Constant (gas) ^e	3.82					Dielectric ^g		4.53	(C_6H_6)		
HCONMe_2	D7/20E	### A 4 P A				Direction from CS bo	nd axis (°)	1.5	0 0		
T 1	DZ/SCF	TZVP/MP2				$CO(NH_2)_2$					
Total energy Mulliken populations		-247.97149				$CO(1112)_2$	DZ/SCF	T7VP/S	CF TZVF	P/MP2	
1 1		total p_{π}	d_{π}			Total energy	-223.9329				
0	8.452 5.736	8.311 1.416				Mulliken populations		total	total		d_{π}
C N	5.736 7.355	5.846 0.840 7.217 1.604				О	8.487	8.485		1.481	
H(C)	0.852	0.936 0.003				C	5.381	5.464		0.803	
$C_t(N)$	6.386	6.273 1.089				N	7.823	7.587		1.788	
$C_c(N)$	6.388	6.289 1.124				H_c	0.605	0.704	0.718	0.012	
$H_{ip}(C_t)$	0.823	0.865 0.004				Ht	0.639	0.734	0.743	0.011	
ip. t											

Table 2 (cont).

N

7.379

7.258

1.675 0.007

Table 2 (cont).			
Mulliken populations	π_1 π_2 MP2 MI	π_3 π_1 P2 MP2 SO	π_2 π_3 CF SCF SCF
O	0.061 0.0	00 0.688 0.	
C	0.319 0.0	11 0.097 0.	323 0.012 0.028
N		89 0.106 0.1	
H _c	0.002 0.0		001 0.003 0.001
H _t			001 0.003 0.001
Dipole moment	5.279 4.7	11 4.360	
$CO(NHMe)_2$			
	DZ/SCF	TZVP/SC	
Total energy	-301.9565		39 -303.23079
Mulliken populations	total	total	total p_{π} d_{π}
0	8.517	8.511	8.388 1.499 0.012
C	5.300	5.432	5.595 0.825 0.069
N	7.644	7.454	7.405 1.748 0.013
H _t	0.657	0.752	0.762 0.011
C _c (N)	6.401 0.746	6.216 0.825	6.277 1.056 0.031 0.821
H _{ip} H _{oop}	0.740	0.823	0.872
Dipole moment	4.802	4.319	4.043
•	4.002	4.317	4.043
$\mathrm{CO}(\mathrm{NMe_2})_2$	D7/	COE TOU	IDIOCE TOURAND
Total anaray			P/SCF TZVP/MP2 0.18996 –381.48815
Total energy			
Mulliken populations	tota		111
0	8.56		
C N	5.24 7.46		
$C_c(N)$	6.41		
$H_{ip}(C_c)$	0.72		
$H_{\text{oop}}(C_c)$	0.83		
$C_t(N)$	6.36		
$H_{ip}(C_t)$	0.85	3 0.86	3 0.863 0.003
$H_{oop}(C_t)$	0.80	7 0.88	0 0.865
Dipole Moment	4.80	0 4.70	2 4.292
Dielectric Constant(C	$_{5}H_{6}^{1})^{1}$ 3.50		
$CS(NH_2)_2$			
, -,-	DZ/SCF	TZVP/SCF	TZVP/MP2
Total energy	-546.5579	8 -546.70046	5 -547.42117
Mulliken populations	total	total	total p_{π} d_{π}
S	16.153	16.383	16.287 3.531 0.040
C	5.898	5.732	5.832 0.865 0.052
N	7.743	7.514	7.481 1.729 0.011
H _c	0.593	0.734	0.747 0.010
H _t	0.638	0.623	0.714 0.011
Dipole Moment Dielectric Constant ^g	6.394 5.07 (dio	6.236 (ane)	5.368
Mulliken populations	π_1 π_2	π_3 π_4	(
S	1.000 0.1		
C	0.000 0.3	89 0.121 0.0	051
N	0.000 0.2		
H _c	0.000 0.0		
H _t	0.000 0.0	01 0.003 0.0	001
$\mathrm{CS}(\mathrm{NMe_2})_2$	DZ/SCF	TZVP/SCF	F TZVP/MP2
Total energy		9 -702.8070	
Mulliken populations		total	total p_{π} d_{π}
S	16.234	16.443	3.715 0.009
C	5.803	5.694	0.740 0.049
N.T.	7 270	7 250	1 (75 0 007

Table 2 (cont).

Mulliken populations	total		total		total	p_{π}	d_{π}
C_c	6.392		6.242				
$H_{ip}(C_c)$	0.844		0.005				
$H_{\text{oop}}(C_c)$	0.850						
C_{t}	6.415		6.258				
$H_{ip}(C_t)$	0.812		0.855		0.003		
$H_{\text{oop}}(C_t)$	0.797		0.874				
Dipole Moment	6.531		6.294				
Dielectric Constant ^f	4.65 (C	H_6					
$HOC(NH_2)_2^{(+)}$							
	VP/MP2						
Total energy -22	5.17015						
Mulliken populations	Total	π-el	ectrons (6	5.004	3 e)		
O	8.260	1.77	78				
C	5.499	0.85	56				
N_1	7.475	1.67	73				
N_2	7.439	1.64	18				
$H_c(N_1)$	0.670	0.00)9				
$H_t(N_1)$	0.671	0.00)9				
$H_c(N_2)$	0.656	0.00)9				
$H_t(N_2)$	0.676	0.00)9				
H(O)	0.654	0.0	13				
$HSC(NH_2)_2^{(+)}$							
TZ	VP/MP2						
Total energy -54	7.77176						
Mulliken populations	Total		π-electror	ns (8.	0048 e)	
S	15.859		3.811				
C	5.705	1	0.881				
N_1	7.443		1.639				
N_2	7.436		1.632				
$H_c(N_1)$	0.672		0.009				
$H_t(N_1)$	0.682		0.009				
$H_c(N_2)$	0.666		0.009				
$H_t(N_2)$	0.680		0.009				
H(S)	0.857	61	0.00619				

^a R. J. Kurland and E. B. Wilson, J. Chem. Phys. **27**, 585 (1957).

Table 3. Dipole Moment natural orbital components.

Formamic	\mathbf{le}^{a}		Thioform	Thioformamide ^a				
Coordinates	\boldsymbol{x}	у	Coordinates	X	y			
O	2.269	0.436	S	-1.476	-1.512			
C	0.000	0.794	C	0.000	1.209			
N	-1.780	-1.059	N	2.524	1.527			
H(C)	-0.842	2.691	H(C)	-1.016	2.994			
$H_c(N)$	-1.228	-2.875	$H_c(N)$	3.656	0.000			
$H_{t}(N)$	-3.627	-0.649	$H_{\mathbf{t}}(N)$	3.306	3.255			

^b TZVP with all-valence CI 3.988D (37.5°).

^c R. Sugisaki, T. Tanaka and E. B. Wilson, J. Molec. Spectrosc. **49**, 241 (1974).

^d TZVP with all-valence CI 4.825D (39.5°).

^e R. M. Meighan and R. H. Cole, J. Phys. Chem. **68**, 503 (1964).

f H. Lumbroso and D. Bertin, Bull. Soc. Chim. Fr. 1728 (1970).

^g G. K. Estok and S. P. Good, J. Phys. Chem. **66**, 1372 (1962).

Table 3 (cont).

)	Total	dipole	moment	operator	expectation	
	values	s (a. u.)	ь			

Formamide			Thioformamide				
Coordinates	\mathcal{X}	y	Coordinates	X	y		
nuclear	-3.004	-0.438	nuclear	3.069	3.227		
electron	1.485	0.192	electron	-1.849	-2.102		
total (a. u.)	-1.519	-0.246	total (a. u.)	1.221	1.126		
total (D)	-3.862	-0.625	total (D)	3.102	2.861		
Total $(\langle r \rangle)(D)$	-3.912		Total $(\langle r \rangle)(D)$	-4.220^{b}			

c) Natural orbital composition and Dipole Moment contributions

Formamide			Dipo	le Mon	ient Coi	nponen
	SCF-MO	Energy (a. u.)	Occupancy (e)	χ	y	
	$1(O_{1s})$	-20.53	1.9996	-2.143		
	$2(N_{1s})$	-15.60	1.9995	1.905	1.077	
	$3(C_{10})$	-11.36	1.9993	0.125	-0.775	
	$4(O_{2s})$	-1.39	1.9863	-1.093	-0.319	
	$5(N_{2s})$	-1.22	1.9863 1.9830	0.932	0.596	
	$6(C_{2s})$	-0.86	1.9751	0.387	-1.217	
		-0.75				
	8	-0.68	1.9672	0.603	0.897	
	$9(\pi)$	-0.61	1.9657	1.188	0.494	
	10	-0.57	1.9635	-0.911	-0.420	
	11	-0.44	1.9595	-0.296	-0.089	
	$12(\pi)$	-0.42	1.9434	-0.989	-0.153	
	$13(\pi^*)$	+0.13	0.0538	-0.468	-0.357	
	14	+0.16	0.0307	-0.456	-0.123	
	15	+0.17	0.0279	-0.994	-0.731	
	16	-0.20	0.0194	1.257	-0.197	
	17	+0.27	0.0187	1.854	1.456	
	18	+0.30	0.0158	2.058	0.895	
	$19(\pi^*)$	+0.30	0.0156	1.531	0.957	

d) Natural orbital composition and Dipole Moment contributions

Thioforman	nide	Dipole I	Moment	Component
SCF-MO	Energy (a. u.)	Occupancy (e)	X	y
$1(S_{1s})$	-91.91	1.9999	1.380	1.411
$2(N_{1s}^{1s})$	-15.62	1.9995	-2.619	-1.628
$3(C_{1s}^{13})$	-11.35	1.9993	-0.095	-1.307
$4(S_{2s})$	-8.91	1.9994	1.430	1.486
$5(S_{2p}^{23})$	-6.59	1.9993	1.371	1.413
$6(S_{2p\pi})$	-6.59	1.9993	1.380	1.411
7(S _{2p})	-6.59	1.9992	1.335	1.328
8	-1.27	1.9851	-0.505	-0.503
9	-1.01	1.9815	-0.821	-0.454
10	-0.83	1.9731	-0.085	-1.764
11	-0.76	1.9679	-2.572	-1.746
12	-0.66	1.9632	-1.180	-0.873
$13(\pi)$	-0.54	1.9623	-1.378	-1.250
14	-0.52	1.9602	0.605	0.732
15	-0.34	1.9521	0.767	0.485
$16(\pi)$	-0.33	1.9429	0.062	0.213
$17(\pi^*)$	+0.10	0.0517	0.003	-0.233
18	+0.12	0.0326	0.749	0.551
19	+0.16	0.0269	-0.286	-0.614
20	+0.19	0.0195	-2.908	-1.314
21	+0.24	0.0183	-1.793	-2.053
22	+0.30	0.0162	-1.366	-1.611
$23(\pi^*)$	+0.30	0.0140	-1.953	-1.046
π -electron sum			+0.401	+0.667

Table 3 (cont).

e) All-electron and π -electron dipole moment contributions

Methylforma	mide	Dimethylf	Dimethylformamide			
	X	y		\boldsymbol{x}	y	
nuclear	-3.098	3.223	nuclear	-1.339	6.224	
electron	2.779	-1.675	electron	1.360	-4.574	
total	-0.319	1.548	total	0.022	1.649	
π -electron	2.916			-0.097		
total (debye)	-0.810	3.934	total (debye)	0.055	4.192	
π-MO's Density	$\boldsymbol{\mathcal{X}}$	y	Density	\boldsymbol{x}	У	
$1.9707\pi_{1}$	5.210	-1.075	$1.97\pi_{1}$	1.704	-3.693	
$1.9636\pi_{2}$	-0.495	-1.220	$1.969\pi_{2}$	2.152	-3.833	
$1.9420\pi_3$	-1.789	2.190	$1.963\pi_{3}$	-0.521	0.673	
$0.0546\pi_{4}^{*}$	-0.067	0.039	$1.940\pi_{4}$	-0.614	3.574	
$0.0187\pi_{5}^{*}$	0.033	-0.012	$0.056\pi_{5}^{*}$	-1.427	3.245	
$0.0132\pi_{6}^{*}$	0.014	-0.013	$0.020\pi_{6}^{*}$	0.014	-0.027	
$0.0083\pi_{7}^{*}$	0.010	-0.005	$0.017\pi_{7}^{*}$	0.022	-0.038	
total π_1 - π_7^*	2.916	-0.097	total π_1 - π_7^*	1.331	-0.099	

f) All-electron and π -electron dipole moment contributions

Urea		Thiourea	
	z		z
nuclear	-3.376	nuclear	-5.074
electron	1.661	electron	2.962
total	-1.715	total	-2.112
total (debye)	-4.360	total(debye)	-5.376
π-MO's Density	Z	Density	z
1.9694 (1b ₁)	1.086	1.9993 (1b ₁)	-4.859
1.9604 (1a ₂)	2.396	1.9671 (2b ₁)	2.221
$1.9496(2b_1)$	-2.827	$1.9568 (1a_2)$	4.072
$0.0513(3b_1^*)$	-0.032	$1.952(3b_1)$	-2.070
$0.0165 (4b_1^*)$	0.011	$0.048 (4b_1^*)$	0.009
$0.0162(2a_2^*)$	0.020	$0.016(2a_2^*)$	0.028
$0.0069 (5b_1^*)$	0.002	$0.014 (5b_1^*)$	0.016
total 1b ₁ -5b ₁ *	0.659	total $1b_1 - 5b_1^*$	0.582

Table 4. EFG (a. u.) and derived NQCC (MHz) at 14 N, 17 O, 33 S and 2 H.

HCO	NH_2				
Centre	Basis	q_{zz}	q_{yy}	$q_{\chi\chi}$	η
EFG					
N	DZ/SCF	$+1.114(\pi)$	-0.623(R)	-0.491(T)	0.119
N	TZVP/SCF	$+0.954(\pi)$	-0.485(R)	-0.470(T)	0.016
N	TZVP/MP2	$+0.876(\pi)$	-0.452(R)	-0.424(T)	0.031
O	DZ/SCF	+2.119(T)	-1.199(R)	$-0.921(\pi)$	0.131
O	TZVP/SCF	+1.684(T)	-0.991(R)	$-0.693(\pi)$	0.177
O	TZVP/MP2	+1.525(T)	-0.841(R)	$-0.684(\pi)$	0.103
H(C)	DZ/SCF	-0.340(R)	$+0.175(\pi)$	+0.165(T)	0.030
H(C)	TZVP/SCF	-0.295(R)	$+0.153(\pi)$	+0.143(T)	0.034
H(C)	TZVP/MP2	-0.285(R)	$+0.151(\pi)$	+0.134(T)	0.059
$H_c(N)$	DZ/SCF	-0.489(R)	$+0.283(\pi)$	+0.206(T)	0.159
$H_c(N)$	TZVP/SCF	-0.457(R)	$+0.271(\pi)$	+0.186(T)	0.187
$H_c(N)$	TZVP/MP2	-0.426(R)	$+0.250(\pi)$	+0.176(T)	0.175
$H_{t}(N)$	DZ/SCF	-0.490(R)	$+0.287(\pi)$	+0.203(T)	0.172
$H_{t}(N)$	TZVP/SCF	-0.465(R)	$+0.280(\pi)$	+0.185(T)	0.204
$H_{t}(N)$	TZVP/MP2	-0.433(R)	$+0.258(\pi)$	+0.175(T)	0.191

^a TZVP basis with all-electron correlation by MP2.
^b The coordinate system is reversed between the formamide and thioformamide molecules. Sign reversed to bring dipole moment sense to same as formamide.

Table 4 (cont).

Centre	Basis	q_{ZZ}	9	vy	$q_{\chi\chi}$	η	
NQCC ^b				2.5			
N	DZ/SCF ^a	$-3.926(\pi$) +2.1	96(R)	+1.730(T)	0.1	19
N	DZ/SCF	$-5.260(\pi$) +2.9	42(R)	+2.352(T)	0.1	19
N	TZVP/SCF	$-4.506(\pi$) +2.2	88(R)	+2.218(T)	0.0	16
N	TZVP/MP2	$-4.136(\pi$) +2.1	33(R)	+2.003(T)	0.0	31
N	MWave ^c	$-3.848(\pi$) +1.9	60(aa)	+1.888(bb)	0.0	19
N	MWaved	$-3.852(\pi$) +1.9	80(aa)	+1.872(bb)	0.0	28
O	TZVP/MP2	+9.166	-5.0	55	-4.111	0.1	03
HCSN	$1H_2$						
Centre	Basis	q_{zz}	4	lyv	q_{xx}	η	
EFG		- 00		<i>JJ</i>			
N	DZ/SCF	$+0.960(\pi$) -0.5	72(R)	-0.388(T)	0.19	2
N	TZVP/SCF	$+0.808(\pi$		34(R)	-0.374(T)	0.07	
N	TZVP/MP2	$+0.790(\pi$		25(R)	-0.365(T)	0.07	
S	DZ/SCF	+2.528(T		280(R)	$-0.248(\pi)$	0.80	4
S	TZVP/SCF	+2.168(T		48(R)	$-0.421(\pi)$	0.61	2
S	TZVP/MP2	+2.182(T) -1.4	04(R)	$-0.778(\pi)$	0.28	7
H(C)	DZ/SCF	-0.356(R	+0.1	$79(\pi)$	+0.171(T)	0.02	3
H(C)	TZVP/SCF	-0.316(R	+0.1	$62(\pi)$	+0.154(T)	0.02	4
H(C)	TZVP/MP2	-0.307(R	+0.1	$63(\pi)$	+0.144(T)	0.05°	9
$H_c(N)$	DZ/SCF	-0.450(R	+0.2	$277(\pi)$	+0.203(T)	0.15	3
$H_c(N)$	TZVP/SCF	-0.449(R	(1) +0.2	$264(\pi)$	+0.185(T)	0.17	7
$H_c(N)$	TZVP/MP2	-0.416(R	+0.2		+0.173(T)	0.16	9
$H_{t}(N)$	DZ/SCF	-0.483(R			+0.203(T)	0.16	
$H_t(N)$	TZVP/SCF	-0.453(R			+0.182(T)	0.194	
$H_t(N)$	TZVP/MP2	-0.425(R	+0.2	$251(\pi)$	+0.174(T)	0.18	2
Centre	Basis	q_{zz}		q_{yy}	q_{xx}		η
NQCC ^b				- 33	-747		
N	DZ/SCF ^a	$-3.383(\pi$	+2	.016(R)	+1.366	(T)	0.192
N	DZ/SCF	$-4.533(\pi$.701(R)	+1.831		0.192
N	TZVP/SCF	$-3.817(\pi$.050(R)	+1.767		0.074
N	TZVP/MP2	$-3.729(\pi$.007(R)	+1.723		0.076
N	MWave ^e	-4.2(6)(1		.9(12)(ac			0.405
S	TZVP/MP2	-34.186	+22	.366	+12.394		0.287
H(C)	TZVP/MP2	-0.206(F	R) +0	$.109(\pi)$	+0.097	(T)	0.059
$H_c(N)$	TZVP/MP2	-0.280(F	R) +0	$.164(\pi)$	+0.116	(T)	0.169
$H_{t}(N)$	TZVP/MP2	-0.286(F	(5)	$.169(\pi)$	+0.117	(T)	0.182
H(N)f	NQR(77K)	0.196(F	R) 0	$.114(\pi)$	0.081	5(T)	0.168
HCO	NHMe						
Centre	Basis	q_{zz}	q_{yy}	$q_{\chi\chi}$, η		
EFG		144	199	133	,		
N	TZVP/MP2	+0.885	-0.499	-0.386	5 0.127		
O	TZVP/MP2	+1.518	-0.816	-0.702			
H(N)	TZVP/MP2	-0.427	+0.256	+0.17			
	Basis						
Centre NQCC	Basis	q_{zz}	q_{yy}	$q_{\chi\chi}$	χ <i>η</i>		
N	TZVP/MP2						
O	TZVP/MP2						
H(N)	TZVP/MP2	+0.287	-0.172	-0.113	5 0.074		
HCO	NMe_2						
Centre EFG	Basis	q_{ZZ}	q_{yy}	$q_{\chi\chi}$	η		
N	TZVP/MP2	+0.913	-0.540	-0.372	0.183		
0	TZVP/MP2						
Centre NQCC	Basis	q_{ZZ}	q_{yy}	$q_{\chi_{J}}$	χ η		
N	TZVP/MP2						
O	TZVP/MP2	+8.963	-4.582	-4.38	1 0.022		

Table 4 (cont).

CH ₃ CONH ₂								
Centre	Basis	q_{zz}	q_{y}	v	$q_{\chi\chi}$	η		
EFG			-7					
N	DZ/SCF	$+1.121(\pi)$	-0.63	8(R)	-0.483(T)	0.138		
N	TZVP/MP2	$+0.887(\pi)$	-0.46		-0.421(T)	0.051		
O	DZ/SCF	+2.064(T)			$-0.762(\pi)$	0.261		
O	TZVP/SCF	+1.524(T)	-0.77	4 (π)	-0.750(R)	0.016		
Centre	Basis	q_{zz}	6	vy	$q_{\chi\chi}$	η		
NQCC ^b		122		уу	7,1,1			
N	DZ/SCF	$-5.293(\pi$.) +3(11(R)	+2.282(T)	0.138		
N	TZVP/MP2	$-4.190(\pi$		201(R)	+1.988(T)	0.051		
N	DZ/lattice	$-2.899(\pi$		85(R)	+0.814(T)	0.439		
N	NQRf	(-)2.469		41	0.725	0.412		
CH ₃ C	SNH,							
Centre	Basis	a	a		0	n		
EFG	Dasis	q_{zz}	q_{y}	y	$q_{\chi\chi}$	η		
	D7/00E	0.060(-)	0.50	(T/D)	0.272/T)	0.222		
N	DZ/SCF	$+0.960(\pi)$		37(R)	-0.373(T)	0.223		
N	TZVP/MP2	$+0.788(\pi)$	-0.44		-0.345(T)	0.125		
S S	DZ/SCF TZVP/MP2	-2.538(T) +2.118(T)			$+0.104(\pi)$ $-0.566(\pi)$	0.918 0.465		
H _c	DZ/SCF	-0.478(R)			+0.202(T)	0.465		
H _c	TZVP/MP2	-0.478(R) -0.417(R)			+0.202(T) +0.173(T)	0.169		
H _t	DZ/SCF	-0.417(R) -0.485(R)			+0.173(T) +0.203(T)	0.162		
H,	TZVP/MP2	-0.426(R)		3.00	+0.173(T)	0.188		
•								
Centre	Basis	q_{zz}	(y	$q_{\chi\chi}$	η		
NQCC ^b								
N	DZ/SCF	$-4.534(\pi$		773(R)				
N	TZVP/MP2	$-3.722(\pi$		093(R)				
N	NQR ^f	(-)1.922		399	0.523	0.456		
H _c	TZVP/MP2	-0.280(R		$164(\pi)$	+0.117(T)			
Ht	TZVP/MP2 NQR ^f	-0.286(R		$170(\pi)$	+0.116(T)			
H H	NQR ^f	0.2027 0.1937		1145 1143	0.0882 0.0794	0.13 0.18		
		0.193/	U.	1143	0.0794	0.10		
CO(N								
Centre	Basis	q_{zz}	q_{yy}	q_{χ}	χ η			
EFG								
N	DZ/SCF		-0.741	-0.52				
	TZVP/SCF		-0.599	-0.50				
	TZVP/MP2		-0.581	-0.47				
O	DZ/SCF		-1.561	-0.30				
	TZVP/SCF		-0.980	-0.48				
**	TZVP/MP2		-0.925	-0.40				
H _c	TZVP/MP2		0.261	+0.17				
H _t	TZVP/MP2	-0.443 H	+0.269	+0.17				
Centre	Basis	q_{zz}	q_{yy}	q_{χ}	$x = \eta$			
NQCC								
N	TZVP/MP2	-4 .966 +	+2.745	+2.22				
O	TZVP/MP2		-5.559	-2.40				
H_c	TZVP/MP2		+0.175	+0.11				
H _t	TZVP/MP2	-0.297	+0.180	+0.11	7 0.213			
CO(N	$HMe)_2$							
Centre	Basis	q_{zz}	q_{y}	.v	$q_{\chi\chi}$	η		
EFG		***	-,	y	****			
N	DZ/SCF	$+1.347(\pi)$	-0.75	0(R)	-0.597(T)	0.114		
	TZVP/MP2	$+1.347(\pi)$ +1.119(\pi)			-0.547(T)	0.030		
O	DZ/SCF	+1.821(T)		70(R)	-0.250π)	0.725		
~	TZVP/MP2	+1.288(T)			-0.346π)	0.463		
		(- /		, -/	/			

Table 4 (cont).

Centre NQCC	Basis	q_{zz}	q_{yy}	$q_{\chi\chi}$	η
0	TZVP/MP2	+7.744	-5.665	-2.079	0.463
N	TZVP/MP2	-5.283	+2.720	+2.562	0.030
N	NQR ^g	(-)4.0344	(+)2.6661	(+)1.3683	0.3217
		()4.0344	(1)2.0001	(1)1.5005	0.5217
CO(N	-,-				
Centre	Basis	q_{zz}	q_{yy}	$q_{\chi\chi}$	η
EFG					
N	DZ/SCF	$+1.400(\pi)$	-0.827(R)	-0.573(T)	0.181
	TZVP/SCF	$+1.255(\pi)$	-0.661(R)	-0.594(T)	0.054
O	DZ/SCF	+1.877(T)	-1.677(R)	-0.200π)	0.787
	TZVP/SCF	+1.542(T)	-1.088(R)	-0.454π)	0.411
Centre	Basis	q_{zz}	q_{yy}	$q_{\chi\chi}$ η	
NQCC		144	79.9	1,1,1	
N	TZVP/SCF	-5.926	+3.121	+2.805 0.0	5.1
N	NORg				025
		(-)4.007	(+)2.303 (+	72.362 0.0	023
CS(N	-,-				
Centre	Basis	q_{zz}	q_{yy}	$q_{\chi\chi}$	η
EFG					
N	DZ/SCF	$+1.154(\pi)$	-0.716(R)	-0.438(T)	0.175
	TZVP/SCF	$+0.999(\pi)$	-0.584(R)	-0.415(T)	0.169
	TZVP/MP2	$+0.978(\pi)$	-0.573(R)	-0.406(T)	0.171
S	DZ/SCF	-3.103(R)	+2.260(T)	$+0.842(\pi)$	0.457
	TZVP/SCF	-2.475(R)	+1.911(T)	$+0.564(\pi)$	0.544
	TZVP/MP2	-2.027(R)	+1.865(T)	$+0.162(\pi)$	0.840
Centre	Basis	q_{zz}	q_{yy}	$q_{\chi\chi}$ η	
NQCC		722	799	7,1,1	
N	TZVP/MP2	-4.621	+2.705 +1	1.916 0.171	
S	TZVP/MP2			2.583 0.840	
-		-32.263	T29.702 T2	2.303 0.040	,
CS(N	_,_				
Centre	Basis	q_{zz}	q_{yy}	$q_{\chi\chi}$	η
EFG					
N	DZ/SCF	$+1.232(\pi)$	-0.742(R)	-0.490(T)	0.204
N	TZVP/SCF	$+1.087(\pi)$	-0.621(R)	-0.466(T)	0.142
Centre	Basis	q_{zz}	q_{VV}	$q_{\chi\chi}$	η
NQCC	July 27 53 (\$1000)	144	1,7,7	IAA	
S	DZ/SCF	-3.354(R)	+2.451(T)	$+0.903(\pi)$	0.462
S	TZVP/SCF	-3.334(R) -2.709(R)	+2.431(T) +2.167(T)	$+0.541(\pi)$	0.600
3	12 V1/3CI	2.709(K)	72.107(1)	10.541(11)	0.000

^a Scaled for best least–squares fit (see Text); DZ/SCF 3.525 MHz/a. u and TZVP/SCF 4.0111 MHz/a. u.

2. Results

2.1. The Equilibrium structures and a comparison with microwave and other experimental structures

The structures (Table 1) of both formamide and thioformamide are close to the MW substitution structures [4, 25, 26]. The MW spectrum of acetamide and other related compounds is complex owing to the coupling of Me torsion with NH₂ inversion [27 - 29] but all of these amides have planar skeletons. The twisted form (NH₂ group perpendicular to the OCN plane) is a transition state [30], and our own studies confirm this. The neutron diffraction structure for acetamide at -165°C, and the electron diffraction structures are close to the present structure, with the single exception of the CN bond, where the lengths are different by -0.029 and +0.014 Å, respectively. Although structures for methyl- and dimethyl-formamides have been reported from x-ray diffraction of the liquid phases, the results are insufficiently well determined to be compared with the present work [31 - 33]. In these studies, the HN and CO are trans in methylformamide [32]. A number of clathrate compounds with formamide and DMF solvation have been reported by x-ray crystallography, but it seems these are inappropriate for comparison with the present study. A wide series of 4-21G equilibrium structures has been reported [34] which contains amides, but little detail is given. In view of the probable steric hindrance, the calculations on both tetramethyl-urea and -thiourea were started with non-planar structures of C₁ symmetry; however, in both cases the out of plane torsion angles reduced to near zero, and lower energy minima were found with the planar structures, but with substantial CNC angle distortions and shortening of the CH bonds with closest H, H appoach. In both cases, the 'gear-wheel' conformation was chosen, such that one H was staggered with respect to those on the sterically closest approach. Two conformations are possible, with C_S and C₁ symmetry. The two conformations differ in energy by 2.700 kJmol⁻¹, with the C_s symmetry conformer being the lower in total energy. This is similar to many other CH₃ rotation barriers.

b Using q_N 20.1 mb(4.723 MHz/a. u.)

^b (for other nuclei see Text).

^c S. G. Kukolich and A. C. Nelson, Chem. Phys. Letters 11, 383 (1971).

^d W. H. Kirchoff and D. R. Johnson, J. Molec. Spectrosc. **45**, 159 (1973).

^e S. G. Kukolich and A. C. Nelson, Chem. Phys. Letters 11, 383 (1971).

f D. T. Edmonds, Physics Reports (Phys. Lett. C) **29**, 233 (1977).

^g Dinesh and M. T. Rogers, J. Chem. Phys. **57**, 3726 (1972).

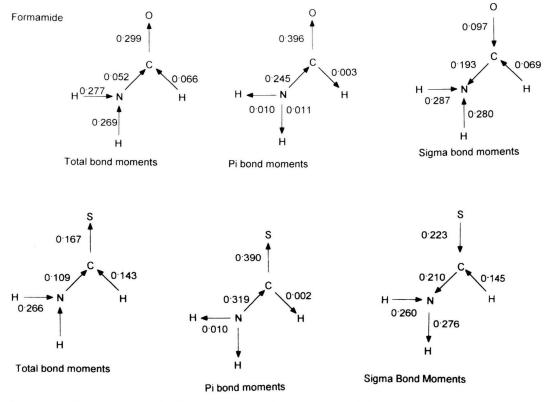


Fig. 1. a), b) Total, π -bond and σ -bond moments for formamide and thioformamide.

2.1.2. The protonated forms of urea and thiourea

Compared with the neutral molecules, urea and thiourea, being O- and S-protonated, which is the stable form in each case, show the expected change of C=O and C=S bonds towards C=O and C=S, respectively, with a lengthening of 0.09 and 0.08 Å, respectively, with corresponding shortening of the CN bonds by about 0.05 and 0.03 Å, respectively, and slight inequalitities in the CN bonds through the reduction in symmetry from $C_{2\nu}$ to C_{S} .

2.2. Charge distribution in simple amides and thioamides

2.2.1. Mulliken Charge Distributions

In connection with ionisation processes [35, 36], the claim has been made that the charge in amides and thioamides favours N over O, and S over N, respectively. Using the Mulliken analysis data from Table 2,

we convert the set of charges, by summation around centres, into a set of 'bond dipoles', as reported previously [38,39], either as total contributions or by partitioning the populations in π - and σ -orbitals separately. For brevity only the TZVP/MP2 results are shown; the SCF results are similar, but with larger dipoles on almost all bonds. The more illuminating set are the separate π - and σ -bond dipoles, and typical examples are shown in Figs. 1a to 1e. For example, with formamide (Fig. 1a), the total bond dipoles show a drift of electrons, relative to the neutral atoms, from H to both C and N, and from N to C and O; however, the separate π -bond dipoles are much larger than the total values, showing that the σ -sets are polarised from O towards C and N, with the σ -CO bond polarisation near 0.10e, and σ -CN polarisation near 0.20e. The π contributions are in the reverse direction and near 0.40 e and 0.25 e, respectively. In the following section the order of bonded atoms AB are in the sense δ + and δ -, respectively. Minor non-integral numbers of π -electrons, arising from the MP2 method, are responsible for incomplete charge balances. These do

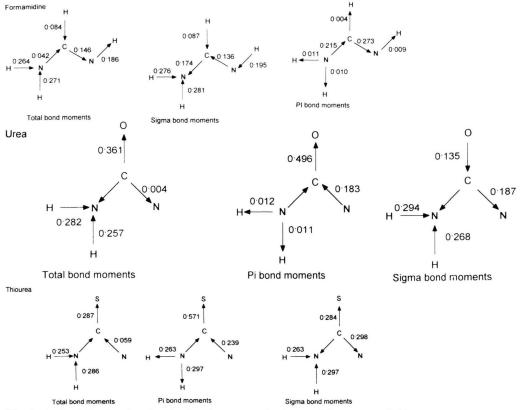


Fig. 1. c), d), e) Total, π-bond and σ-bond moments for formamidine, urea and thiourea.

not affect the conclusions, which relate to large shifts.

Thioformamide (Fig. 1b) is similar in total bond dipoles to the O analog; the CS bond is polarised towards S by about 0.17 e, the NC bond towards C by about 0.11 e, with the HC/HN bonds as previously. However, the π -electrons lead to bond dipoles on the CS bond of 0.39 e towards S, and the NC bond polarised towards C by 0.32 e. The σ -components show a large polarisation of CS (0.22 e), with the negative end at C, with CN also polarised towards N by about 0.21 e. Thus the Mulliken bond dipoles clearly indicate the reason for the difference of the O and S series of dipole moments: the σ -bond is much more strongly polarised in CSNH₂ than in CONH₂, towards C from S and O, respectively.

The situation with the other molecules is similar to the above, and we choose cases where there are two NH₂ groups. In urea (Fig. 1d and 4) the π -system is polarised towards O from N via C, with NC and CO bond dipoles of 0.18 and 0.49 e, respectively. The σ -system has the reverse polarisation from O via C towards N, with components OC 0.13 and CN 0.19 e

respectively. The thiourea (Fig. 1e and 5) π -system has N via C to S polarisation with bond dipoles of 0.24 e (NC) and 0.28e(CS), while the σ -system has the S via C to N polarisation, with bond dipoles SC 0.27 e and CN 0.18 e, respectively.

It is clear that the enhanced transfer of electrons from N via C to S over N via C to O in the π -system can be regarded as an enhanced resonance effect, as discussed previously. However, the effect is probably a "push-pull" mechanism; relative to C, N is a very strong σ -acceptor, and S is a better σ -donor than O, enabling the back-donation from N in the π -system to be enhanced in the S case. These effects are not based upon electronegativity alone however, since when formamidine is treated in a similar manner (Table 1c and 6), the fact that the central C atom is now bonded to two N atoms, still leads to the σ-bonding being polarised in the direction NH via C to NH₂, with the π -bonding polarised in the reverse direction. Hence the effect seems to arise from the differential contribution of 2π -electron from the CO, CS and CNH groups, but 2π -electrons from the N atom. Similar effects are

apparent in our studies of esters and dithioesters, to be published later.

The O-protonated form of urea shows a loss of about 0.1-0.15e from O, C and N, with the remainder being lost from the H-atoms; in thiourea the loss of density on the S atom is larger (0.4e), but with similar changes at C, N and H to those for urea. However, the π -density at O and S is larger in the protonated case than in the neutral one by nearly 0.3e, showing that almost all the overall loss at these atoms is by additional σ -bond polarisation. These all reflect the increase in delocalisation produced by addition of a proton, the CN/CO bond lengths changing toawards a more even set, with parallel changes in thiourea.

2.2.2. Dipole Moments; some general comments

In order to analyse the individual MO or natural orbital(NO) contributions to the overall dipole moment (or EFG tensor element), we must be aware of the nuclear terms, which depend upon the coordinate system used in the calculation. Here we use the 'centre of nuclear charge' system, in which the orientation of the molecule is chosen such that the origin is the centre of nuclear charge. It will be seen below that the average position of some core electrons is effectively the same as the coordinates of the atom concerned, but with a change of sign. The sum of the nuclear and electron terms defines the dipole moment. In Table 3, we give both the NO contribution to the wave-function (in electrons), restricting to the largest terms, and the total contribution of that NO to the overall DM. The separate π -electron components are also given. The dipole moment component shown is for a total occupancy of 1-electron; hence the actual contribution to the dipole moment is the product of these x,y-figures with the NO occupancy. Examples with dipole moment and EFG tensor elements are shown in Figs. 2 to 6.

The π -MO's and NO's, which form an important part of the present discussion, are basically heteroatom substituted versions of the allyl anion (in the case of the amides and thioamides) and the trimethylenemethane dianion (for the ureas and thioureas); thus the Hückel picture of the allyl anion has a bonded MO (π_1 , 1b₁) covering all centres, with no out of plane nodes, and a non-bonded (π_2) MO with the centre atom nodal (1a₂). These simple methods can be mapped onto the present methodology. We take the more general case of acetamide and

thioacetamide in the present results. The acetamide π -NO's (Table 3) show that π_1 has most of the total population in the CH₃ group, π_2 on the N atom (and no nodes perpendicular to the molecular plane), while π_3 is nodal between C and N, with populations mainly on the O-atom; residues lie in the CH₃ group. Thioacetamide has π_1 localised 99% on S as $2p_{\pi}$, with π_2 similarly 96% localised in the CH₃ group. π_3 which compares with π_2 in acetamide, is more evenly distributed with S, C(S), and N populations of 14, 34 and 49%. The highest π -NO (π_4 for thioacetamide), has population mainly on the S-atom. Hence the two highest occupied π -orbitals for the pair of molecules behave similarly, being strongly polarised in opposite directions in each molecule. Taken together, the two NO's present a very similar total population pattern for amide and thioamide.

The urea and thiourea π -MO's are similar, and both related to the trimethylenemethane 1a'' + 1e'' MO's but with the latter split into $1b_1$ and $1a_2$. The $C_{2\nu}$ structures lead to $1a_2$ and its corresponding NO almost totally localised on N. There are significant changes in the π -MO's and corresponding π -NO's (Table 3), with the nearly 3-fold symmetry of $1b_1$ at the SCF level being strongly mixed with $2b_1$ at the MP2 level.

2.2.3. Total Dipole moments and experimental comparisons

Owing to low vapour pressures, several of the present compounds have been studied in solution rather than MW spectroscopy. Amides and thioamides are known from these measurements to self-associate in benzene, leading to problems with extrapolation of data to infinite dilution; however, dioxane appears not to show this effect. Thus the same authors found values for acetamide of 3.07 D (C₆H₆) and 3.70 D (dioxane) [39]. The gas-phase value for the dipole moment is 3.68(3) D from the Stark effect on the MW spectrum [28] and close to our present MP2 value of 3.84 D. Hence we have some reservations regarding the substituted urea and thiourea values found experimentally. In the following discussion we concentrate upon the calculated MP2 values, unless otherwise mentioned. The results (Table 2) show that the DZ and TZVP bases generally lead to values larger than experiment at the SCF level, but these are reduced to close to experimental values at the MP2 level.

The calculated direction of the moments for both formamide and thioformamide are very close to the

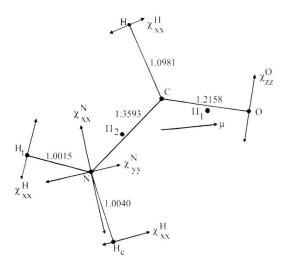


Fig. 2. EFG and average π -electron position from the TZVP/MP2 natural orbital calculations for formamide.

MW ones, and both lie close to the line from the midpoint of the (H₂)NC bond and the O or S atom (Figs. 2 and 3), respectively. Similarly the directions for the mono- and di-methylated formamides lie close to the N-O atomic (nonbonded) axis. The electron diffraction structure for acetamide [29], used as a template for the MW analysis, shows that the dipole moment for the molecule lies very close to the CO bond direction; the present work (MP2) finds an angle between the CO bond axis and the dipole moment of about 11.5°, with the tilt towards the CH₃ group. This is consistent with formamide and a CH₃ group replacement of the H atom, since the dipole moment for formamide lies by about 13.5° from the CO bond axis, and towards the H-atom.

The present results on total dipole moments agree with the experimental determinations as to the order formamide < thioformamide, urea < thiourea, tetramethylurea < tetramethylthiourea. There is every reason to think this is likely to be general.

2.2.4. Dipole moment σ - and π -components

Comparison of the nuclear coordinate positions (Table 4a) with the average positions ($\langle er \rangle$) of the core and inner valence (e. g. O_{2s} , N_{2s}) electrons, for formamide and thioformamide, shows that these electrons are heavily localised, as expected. The change of sign arises from the electronic charge in $\langle er \rangle$ and addition of the nuclear and electronic components. The dipole moment, unlike the EFG, is invariant to

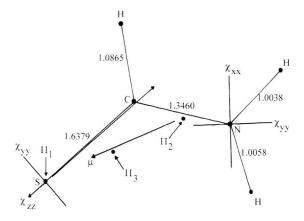


Fig. 3. EFG and average π -electron position from the TZVP/MP2 natural orbital calculations for thioformamide.

the reference centre, but is conventionally determined at the centre of mass, as here. Formamide has a large μ_x component (the x-axis lies 8° from the CO bond), and small μ_v component; the sum over the first 5 π -NO's yields very small polarisation totals (Table 4), such that almost all of the total electronic components arise from σ -bond polarisation. The value of the operator in (1) for each MO lies in the range ± 3 a. u., and the contribution from the natural orbitals declines quickly, owing to the low NO occupancy. Hence summation of the first few terms is appropriate. Indeed, the average positions of the π -electrons, highly occupied 1a" and 2a" shown in Fig. 1 indicates that the electrons lie very close to the midpoints of the CO and NC bonds respectively. This confirms the low polarisation of the π -electrons; at the SCF level, the π -electrons are much more delocalised, with the centroids of the 1a" and 2a" MO's lying near the centroid of the NCO triangle. Thus the π -electrons do not behave as a group from the point of view of delocalisation, since for the allyl anion, which is isoelectronic but homopolar, the centroids of both 1b₁ and 1a₂ would be at the central C-atom.

Comparison of thioformamide with formamide at the TZVP/MP2 level (Figs. 2 and 3) shows that the π_1 NO lies very close to the S-atom $(S_{2p\pi}),\,\pi_2$ relatively close to the CN midpoint, but slightly off-the bond axis (towards the S side), while π_3 lies well off the internuclear axes, and close to the SN axis (Figure 3). Acetamide and thioacetamide show the same phenomenon; for the S-compound, π_1 (S $_{2pp}$) lies close to the S atom, $\pi_2(CH_3)$ lies close to $C_{Me},\,\pi_3$ near the NC bond but closer to C than N, while π_4 lies well off the interbond axes and close to the

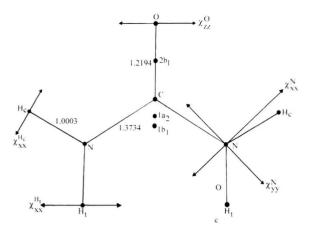


Fig. 4. EFG and average π -electron position from the TZVP/MP2 natural orbital calculations for urea.

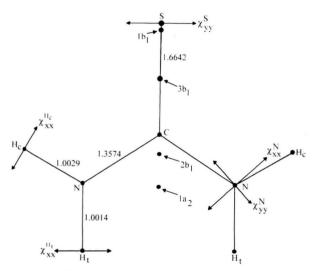


Fig. 5. EFG and average π -electron position from the TZVP/MP2 natural orbital calculations for thiourea.

SN axis. Acetamide has π_1 close to the CH₃ group, π_2 relatively close to the CN mid-point, while π_3 is similarly near the CO midpoint. Whilst both π_2 and π_3 are displaced from the corresponding internuclear axes, in contrast to those for formamide, the mean positions are well-separated from eachother. The fact that π_3 and π_3 in thioformamide and thioacetamide, respectively, lie so far off the bond axes, and relatively close to the SN axis, is a sign of strong delocalisation in these compounds, relative to the O-analogs.

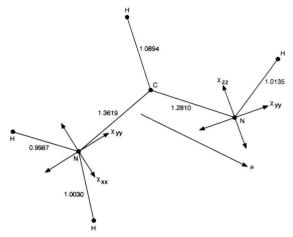


Fig. 6. EFG and average π -electron position from the TZVP/MP2 natural orbital calculations for formamidine.

2.3. Localised molecular orbitals

Since the NO and MO EFG contributions are fully delocalised and do not offer a simple interpretation, we have converted the NO's to localised orbitals (LMO's) [40]. This technique, usually employed with the SCF MO's [41], is useful in cases where the presence or absence of bonds is important; the technique maximises the distance between the centroids of the electron pairs by an orthogonal transformation of the density matrix. In effect, the LMO is a conversion of the delocalised MO's (an $N \times N$ AO by MO matrix) to a set of N off-diagonal terms. The EFGs are then evaluated from the resulting wave-function. A feature of σ/π -systems is that such localisations with the total wave-function in one stage leads to $\sigma+\pi$ MO's forming 'banana bond' pairs [42], which by definition have centroids at the same in-plane position, but above and below the plane. This is overcome by separate localisation of the σ - and π -MO's or NO's. Another feature of this transformation is that lone pair MO's on carbonyl groups, which are usually defined by a₁ and b₂ symmetry adapted MO's, mix to form 'rabbit ears' pairs; these are totally equivalent in density terms but unhelpful for spectroscopic purposes. For further discussion of the role LMO's can play in (photoelectron) spectroscopy, see [46].

In the cases shown (Table 5) we have given a set of NO contributions for selected molecules, such as

Table 5 (cont).

Table 5. Natural and Localised Orbital contributions to the ${\rm EFG}^{a,b,c,d}$.

Ero .				
				LMO $q_{zz} = q_{yy} = q_{xx} = q_{xy}$
5a) Formam	ide TZVP/M	1P2		σ -NC(O) 1.007 -0.503 -0.504 -0.125
total contrib	outions			σ -N(CH ₃) -0.005 0.499 -0.493 0.700
	$q_{zz} = q_1$	q_{xx}	q_{XY}	σ -N(CH ₃) -0.195 0.682 -0.486 -0.589
nuclear	-0.121 -0.64		0.344	π -NC(O) -0.856 -0.879 1.735 -0.001
electron	-0.304 0.19		-0.344	5d) Urea
total	-0.424 -0.45	0.876	0.000	Total LMO contributions to the EFG at ¹⁴ N
Integrals over	er natural or	bitals		$q_{zz} = q_{yy} = q_{xx} = q_{xy}$
Natural orbital	$q_{zz} = q_z$	q_{xx}	q_{XY}	nuclear -0.778 -0.059 0.838 0.256
1	-0.012 0.02		-0.005	electron 0.197 -0.399 0.202 -0.256
2	0.000 0.00		-0.000	total -0.581 -0.459 1.040 0.000
3	-0.006 0.06		-0.081	Individual LMO contributions to the EFG
4	-0.004 0.03	34 -0.030	-0.017	LMO $q_{zz} = q_{yy} = q_{xx} = q_{xy}$
5	0.021 0.03	37 -0.058	-0.004	NH _c -0.485 1.006 -0.521 -0.245
6	0.097 - 0.03	-0.066	-0.038	NH _t 0.425 0.090 -0.514 0.756
7	-0.150 0.6	15 -0.465	0.562	σ-NC 0.799 -0.308 -0.491 -0.496
8	0.951 -0.45	56 -0.495	0.064	π -NC -0.901 -0.913 1.813 -0.004
$9(\pi)$	-0.650 -0.63		-0.017	5e) Thioformamide
10	-0.021 0.1		-0.199	Total Natural Orbital contributions to the EFG at ¹⁴ N
11	-0.130 0.49		-0.432	$q_{zz} = q_{yy} = q_{xx} = q_{xy}$
12(π)	-0.248 -0.22		-0.006	nuclear 0.058 -0.859 0.801 -0.090
$13(\pi^*)$	-0.447 -0.4		-0.022	electron -0.423 0.434 -0.011 0.090
14	-0.039 0.35		-0.452	total $-0.365 -0.425 0.790 0.000$
15	0.011 0.02		-0.033	Integrals over natural orbitals
16 17	-0.708 1.89		-1.163	Natural orbital q_{zz} q_{yy} q_{xx} q_{xy}
18	2.836 -0.9 -0.235 0.44		2.184	5 -0.049 0.109 -0.061 0.045
19(π*)	-0.233 0.42 -1.652 -1.64		-0.362 -0.003	$6(\pi)$ -0.006 0.014 -0.008 -0.006
LMO contri				9 0.012 0.039 -0.050 -0.011
				10 0.121 -0.011 -0.110 0.128
Localised orbital		q_{XX}	q_{xy}	11 0.968 -0.291 -0.676 -0.752
NH _c	1.053 -0.52		-0.015	12 -0.112 0.612 -0.500 0.614
NH _t	-0.141 0.66		0.674	$13(\pi)$ -0.551 -0.510 1.061 0.010
π–NC	-0.876 -0.86		-0.008	14
σ–NC	-0.133 0.63		-0.657	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
π-СО	-0.025 0.0	15 0.010	-0.011	LMO contributions to the ¹⁴ N EFG
5b) Methyl			11	
Total LMO	contribution	s to the I	EFG at 'N	LMO $q_{zz} = q_{yy} = q_{xx} = q_{xy}$
	$q_{zz} = q_z$	q_{XX}	q_{XY}	π-CS 0.036 -0.003 0.039 0.004
nuclear	-0.728 -0.2	16 0.945	-0.205	NH _c 1.014 -0.485 -0.530 0.276 NH _t 0.105 0.418 -0.523 -0.772
electron	0.325 -0.26	57 -0.058	0.205	NH _t 0.105 0.418 -0.523 -0.772 σ-NC -0.332 0.837 -0.505 0.492
total	-0.404 -0.48	0.886	0.000	π -NC 0.852 -0.833 1.685 0.008
Individual L	MO contrib	itions to	the EFG	5f) Thiourea
LMO	q_{zz} q_z	q_{xx}	q_{XV}	Total LMO contributions to the EFG at ¹⁴ N
π –CH ₂	-0.019 0.03		0.019	
π -CO ²	0.016 -0.02		-0.007	q_{zz} q_{yy} q_{xx} q_{xy}
σ-NCH ₃	-0.233 0.73	24 -0.491	0.565	nuclear -0.873 -0.005 0.877 0.154
σ–NH	0.024 0.49	95 -0.519	-0.747	electron 0.303 -0.409 0.106 -0.154 total -0.570 -0.414 0.983 0.000
σ -NC(O)	1.007 -0.50	00 -0.507	0.152	
π -NC(O)	-0.858 -0.8	79 1.737	0.003	LMO contributions to the ¹⁴ N EFG
5b) Dimethy	l formamide			LMO $q_{zz} = q_{yy} = q_{xx} = q_{xy}$
Total LMO	contribution	s to the I	EFG at ¹⁴ N	NH _t 0.249 0.267 -0.516 0.777
	$q_{zz} = q$		a	NH _c -0.416 0.942 -0.526 -0.407
nuclear	q_{zz} q_{zz} q_{zz} -0.692 -0.42		q_{xy} 0.165	σ-NC 0.899 -0.404 -0.495 -0.367
electron	0.331 -0.13		-0.165	π -NC -0.874 -0.892 1.766 -0.004
total	-0.361 -0.55		0.000	5g) O-protonated urea
	MO contrib			Total LMO contributions to the EFG at ¹⁴ N
				$q_{zz} = q_{yy} = q_{xx} = q_{xy}$
LMO	$q_{zz} = q_{zz}$		q_{xy}	nuclear 0.079 -0.957 0.878 0.080
π-CH ₃	-0.008 0.0		-0.028	electron -0.382 0.392 -0.010 -0.080
π –CH ₃ π –CO	-0.011 0.03		0.026	total $-0.303 -0.565 0.868 0.000$
11-00	0.009 -0.02	24 0.015	-0.015	

Table 5 (cont).

LMO contributions to the EFG at ¹⁴ N							
LMO	q_{zz}	q_{yy}	q_{XX}	q_{XV}			
NH _t NH _c	0.759	-0.226	-0.533	-0.631			
NH_c	0.572	-0.041	-0.531	0.737			
σ-NC	-0.504	1.010	-0.506	-0.104			
π –NC	0.885	-0.857	1.742	-0.002			
5h) S-1	protona	ted thi	iourea				
Total I	LMO co	ontribu	tions to	the E	FG at 14N	1	
	q_{zz}	q_{yy}	$q_{\chi\chi}$	q_{xy}			
nuclear	0.061	-0.963	0.902	0.063			
electron	-0.346	0.430	-0.084	-0.063			
total	-0.285	-0.533	0.818	0.000			
LMO contributions to the ¹⁴ N EFG							
			$q_{\chi\chi}$				
NH_c	0.796	-0.262	-0.534	-0.605			
NHt	0.529	0.002	-0.531	0.754			
σ-NC	-0.497	1.004	-0.507	-0.149			
π –NC	-0.866	-0.836	1.703	-0.003			

^a TZVP basis with all-electron correlation by MP2.

formamide and thioformamide, and the nuclear and electronic terms leading to the total tensor elements for all molecules. This is followed by the principal contributors to the EFG; χ_{ii} less than 0.05 are excluded, except π -NO contributions. Small differences occur between the LMO totals in Table 5 and those for NO's in Tables 4 and 5. These arise from truncation of the summation of terms in the LMO to the large (SCF occupied) components only.

2.3.1. LMO for formamide, urea and their methyl derivatives

The LMO positions (Figs. 1 to 6) for these compounds show very constant features as expected. The σ - and π -LMO of the CO bond in formamide and its methylated derivatives have centroids near 0.5 and 0.39 Å from the O atom. The CN σ and π -LMO's are slightly more variable, with a trend on methylation $(NH_2, NHMe, NMe_2)$ of σ -LMO 0.60 to 0.57 Å, and π -LMO 0.16 to 0.22 Å, showing the increase on π donor capacity. HC(Me), HC(O) and HN bonds are localised about 0.30, 0.34 and 0.43 Å from the H atoms, respectively. The 'rabbits ears' lone pair orbitals are quite strongly removed from the sp² hybrid orbital positions; the 2 LP_O orbitals are effectively identical, but with C-O-LP_O angles of about 108 rather than 120° for the hybrid. This is consistent with the much higher p-orbital composition than sp². The position with urea is rather similar in most respects, but here the 2 LP_O LMO's make an even less obtuse angle, with both at about 103° from the C-O bond. σ - and π -LMO of the CO bond are about 0.51 and 0.30 Å from the O-atom; the corresponding positions for tetramethylurea are 0.58 and 0.33 Å, with the LP_O making an angle of 105° to the CO axis.

When urea is O-protonated, the HO bond centroid becomes near the OH midbond (0.51 Å from H), with the σ - and π -LMO of the CO bond lying 0.55 and 0.11 Å from the O atom, respectively. Clearly the π -LMO centroid lies closer to the O atom than in the neutral molecule, again consistent with the greater positive charge on the central C atom in the cation. Here the LP_O lies at 118° from the CO bond axis, much closer to the sp² value, with the angle HOC at 114°. Although strictly non-equivalent, the 2 N atoms are very similar, the σ - and π -LMO of the CN bonds lying at 0.59 and 0.22 Å from the N atom. Thus the CN and CO bonding shows the greater donating power of N over O. The protonation of urea has been studied by differences in the topology of the charge distribution [44], both from the point of view of the internal Hbonding between molecules, and the direct effect of the H(O)-addition. The results again demonstrate that protonation reduces the π -component of the N EFG. with concurrent increase along the H-N bonds, but beyond this there is no immediate method of relating the two procedures.

2.3.2. LMO for thioformamide, thiourea and their methyl derivatives

The σ - and π -LMO's of the SC bonds are at 0.90 and 0.54 Å from the S atom, so that the centroid of the σ -bond is closer to C than the midpoint. The LP_s LMO's are again nearly equivalent, with distances of 0.52 Å from S and making C-S-LP_S angles of 105°. The σ - and π -LMO of the CN bonds are 0.57 and 0.19 Å from the N atom, both slightly larger than in formamide under the same level of calculation. This is consistent with the slightly higher electron donating effect of N in the thio-compound. The situation with thiourea is similar to both thioformamide and urea; the σ - and π -LMO of the SC bonds are at 0.94 and 0.40 Å from S, with a C-S-LP_S angle of 103°. Sprotonation of thiourea gives a structure with HSC angle 105° and the C-S-LP_S angle 128° ; The σ - and π -LMO centroids for SC are 0.96 and 0.19 Å from S, again showing quite high π -localisation on S, with the σ-bond centroid closer to C than S.

^b Coordinate systems as shown in Table 4.

^c The natural orbital sequence numbers are the same as Table 4

^d LMO contributions < 0.05 in χ_{zz} omitted.

2.4. Electric Field Gradients and derived NQCC

In previous papers we have discussed the effect of condensation on the NOCC at ¹⁴N, in the light of monomer calculations which compare with the gas phase molecules, and cluster or lattice calculations, both of which refer to the condensed phase [11, 12]. The present results include systems such as formamide, acetamide, urea and thiourea, where we have previously discussed the relationship of the Hartree-Fock SCF results to experiment. We do not add to that discussion here except for a few points in relation to the MP2 correlated calculations. First, the magnitude of the EFG at almost all nuclei and almost all molecules is reduced; hence the NQCC are numerically smaller for the MP2 calculations, and the use of the 'best values' for the atomic quadrupole coupling constants (Q_7) already brings the results into the area for agreement with experimental gas-phase work, without 'scaling' (as was necessary with the DZ-SCF results). In only a few cases, largely restricted to ¹⁷O NQCC's, are the individual NQCC's changed in order between the TZVP/SCF and TZVP/MP2 calculations, but the DZ to TZVP change leads to more interchanges in χ_{ii} . Further discussion of the results in Table 4 in relation to NQR studies, where the single molecule calculations have limited applicability, are delayed to a following paper using lattice calculations [45].

2.4.1. The MO, NO and LMO contributions to the EFG

For (x, y) planar molecules, the EFG (3×3) matrix has one off-diagonal element (q_{xy}) . The diagonalalised tensor in general has non-zero nuclear and electronic q_{xy} but the sum is zero, and this is shown in Table 5. Normally the values obtained for the individual MO's are based upon a 1-electron occupancy and are then multiplied by the occupation numbers for the MO (2 or 0). Many examples of MO contributions in such cases have been reported previously [46, 47]. When MP2 correlation is employed, the occupancy varies widely but again the NO contribution is the product of the occupancy and orbital contributions. The delocalised NO's, like the starting MO's, show many orbitals making EFG contributions. The LMO's largely remove this tendency, and reduce the main terms to just 3 bonds (or 2 bonds and a lone-pair at O or S). Hence the data in Table 5 is limited to those LMO's, together with the other π -LMO's.

The first thing to emerge from Table 5 is the strong relationship to the Townes-Dailey theory; the LMO contributions show very uneven values for the individual EFG components, as evidenced by the NH bond contributions. This is because of the very differing contributions of the nuclei to the nuclear part, owing to different geometric positions. It is possible to make some general conclusions about the EFG LMO components, especially in the out-of-plane (oop)directions, since these are invariant to rotation of the molecule around the oop-axis. Both in Tables 4 and 5, xx, yy, zz are used strictly according to (1) and do not refer to the molecular coordinate system.

Detailed analysis of the EFG tensor elements from the LMO's (Table 5) shows that the out-of-plane components (π -NC) at 14 N, q_{zz} are large and positive, and generally close to +1.7 a. u. for each of the formamides. The three σ -bonded components (σ -NC, NH_c and NH_t) are all similar and close to -0.5 a. u. The resultant of the 4 terms (+0.21 a. u.) lies close to the total electronic component but is reduced further by the more distant terms. Together with the positive nuclear components, these lead to the observed negative NQCC at these centres. The contributions to q_{zz} from the NH and NMe groups are all similar. When we compare with urea, the three σ -bonded components are still similar, but π -NC has increased slightly, which with the positive nuclear component leads to a higher (negative) NOCC. A similar comparison of formamide with its thio-derivative again shows that the oop-components are very similar in their effect on χ_{zz} , namely close to -0.5 a. u. for NH and σ -NC, while π -NC is lower at +1.69 a. u.; again not all the electronic component can be accounted for by the 4 LMO terms. The full resultant, with a slightly larger (positive) nuclear component, leads directly to the smaller (negative) NQCC at ¹⁴N in the thioamide (Table 4). Finally, the comparison of urea with thiourea again shows that q_{zz} derived from the π -OC versus π -SC LMO's is slightly larger (positive) in the O compounds, although a full analysis with the nuclear component is required to give a detailed picture.

3. Conclusions

We have obtained equilibrium structures with large (TZVP) basis sets at the MP2 correlated level. The resultant wave-functions, the natural orbitals, show that

the primary contribution other than the SCF determinant consists of determinants, where one of the σ -MO's is doubly replaced (i. e. both electrons) by a π^* -MO, with resultant loss of some σ -electron density. Hence the total π -occupancy is very slightly above the classical picture of 4π -electrons for an amide group. The molecular structures are close to experiment in the few cases where MW and ED data are available. The tetramethyl urea and thiourea molecules still retain a planar skeleton, but with significant distortion of the CNC and HCN angles, when a gear-wheel conformation is adopted.

The dipole moments are dissected (Fig. 5) in terms of the average positions of the electrons for the NO's, and the push-pull mechanism for the allylic system seems to account for the higher dipole moments in thioamides than amides. The corresponding dissection of the formamidine system, where the electronegativity of the doubly bonded group is the same as that of the 2π -electron donor to the allylic system, shows that the matter is not just a result of the better σ -electron donation of S relative to O, since the same phenomenon occurs in the amidine. It appears to be

- L. Pauling, The Nature of the Chemical Bond, 2nd Edition, Cornell Univ. Press, Ithaka, New York 1956, pp. 58.
- [2] S. G. Kukolich and A. C. Nelson, Chem. Phys. Letters 11, 383 (1971).
- [3] W. H. Kirchoff and D. R. Johnson, J. Molec. Spectrosc. 45, 159 (1973).
- [4] R. Sugisaki, T. Tanaka, and E. Hirota, J. Molec. Spectrosc. 49, 241 (1974).
- [5] R. D. Brown, P. D. Godfrey, and J. Storey, J. Molec. Struct. 58, 445 (1975).
- [6] W. Kasten and H. Dreizler, Z. Naturforsch. 41a, 1173 (1986).
- [7] M. Minematsu, J. Phys. Soc. Japan 14, 1030 (1959).
- [8] A. Zussman, J. Chem. Phys. 58, 1514 (1973).
- [9] D. H. Smith and R. M. Cotts, J. Chem. Phys. 41, 2403 (1964).
- [10] E. A. C. Lucken, Nuclear Quadrupole Coupling Constants, Academic Press, London 1969, p. 224.
- [11] M. H. Palmer and J. A. Blair-Fish, Z. Naturforsch. 49a, 146 (1994).
- [12] C. Gatti, V. R. Saunders, and C. Roetti, J. Chem. Phys. 101, 10686 (1994).
- [13] A. L. McClelland, "Tables of Experimental Dipole Moments", Volumes 1 and 2, Publ. Freeman (1963) and Rahara (1973), California.

an inevitable consequence of the $2,1,1-\pi$ electron contributions of N,C and O(or S) to the allylic system. The same approach to the urea and thiourea systems, which are perturbed examples of the trimethylenemethane system, is also successful.

The NO's localise readily to LMO's, and these account for the gross magnitudes of the electronic terms in the EFG. However, in the summation with the nuclear terms, the more distant centres still have some defining impact. Hence the general trends for ¹⁴N NQCC to be higher in amides than thioamides, do emerge from the LMO analysis.

Acknowledgements

It is a pleasure to acknowledge the assistance from Dr. S. G. D. Henderson for the preparation of the diagrams. I thank SERC (now EPSRC) for a Grant for the purchase of a DEC 3600 AXP V1.5 workstation and Dr. M. F. Guest (Daresbury Laboratory) for the installation of a copy of **GAMESS-UK** on the AXP and the Cray T3D computers used in this investigation.

- [14] R. F. Hobson, L. W. Reeves, and K. N. Shaw, J. Phys. Chem. 77, 1228 (1973).
- [15] R. C. Neuman, D. N. Roark, and V. Jonas, J. Amer. Chem. Soc. 89, 3412 (1967).
- [16] M. F. Guest, J. Kendrick, J. H. van Lenthe, K. Schoeffel, and P. Sherwood, GAMESS-UK USER's GUIDE and REFERENCE MANUAL, Version 5, Dec 1994, CFS Ltd., Daresbury Laboratory, UK.
- [17] S. Huzinaga, J. Chem. Phys. 42, 1293 (1965).
- [18] T. H. Dunning, J. Chem. Phys. **53**, 2823 (1973).
- [19] S. Huzinaga, J. Chem. Phys. 53, 348 (1970).
- [20] M. H. Palmer, Z. Naturforsch. 45a, 357 (1990).
- [21] M. H. Palmer, Z. Naturforsch. 47a, 203 (1992).
- [22] D. R. Neumann and J. W. Moskowitz, J. Chem. Phys. 50, 2216 (1969).
- [23] M. H. Palmer, A. J. Blake, and R. O. Gould, Chem. Phys. 115, 219 (1987).
- [24] P. Pyykko and J. Li, Report HUKI 1-92 ISSN 0784-0365; an update of P. Pyykko, Z. Naturforsch. 47a, 189 (1992).
- [25] E. Hirota, R. Sugisaki, C. J. Nielseb, and G. O. Sorensen, J. Molec. Spectrosc. 49, 251 (1974).
- [26] R. D. Brown, P. D. Godfrey, and B. Kleibomer, J. Molec. Spectrosc. 124, 34 (1987).
- [27] E. L. Hansen, N. W. Larsen, and F. M. Nicolaisen, Chem. Phys. Letters 69, 327 (1980).

- [28] T. Kojima, E. Kano, K. Nakagawa, and S. Tsunekawa, J. Molec. Spectrosc. 122, 408 (1987).
- [29] M. Kitano and K. Kuchitsu, Bull. Chem. Soc. Japan 47, 67 (1974).
- [30] V. J. Klimkowski, H. L. Sellers, and L. Schafer, J. Molec. Struct. 54, 299 (1979).
- [31] H. Ohtaki, A. Funaki, B. M. Rode, and G. J. Reibnegger, Bull. Chem. Soc. Japan 56, 2116 (1983).
- [32] H. Ohtaki, S. Itoh, and B. M. Rode, Bull. Chem. Soc. Japan 59, 271 (1986).
- [33] H. Ohtaki, S. Itoh, T. Yamaguchi, S. Ishiguro, and B. M. Rode, Bull. Chem. Soc. Japan 56, 3406 (1983).
- [34] L. Schafer, C. Van Alsenoy, and J. N. Scarsdale, Theochem. 3, 349 (1982).
- [35] M. A. Baldwin and K. J. Welham, Org. Mass Spectrom. 23 425 (1988).
- [36] L. C. Snyder and H. Basch, Molecular Wave Functions and Properties, Wiley, New York 1972, (Table) T18.
- [37] M. H. Palmer, R. H. Findlay, and A. J. Gaskell, J. Chem. Soc., Perkin Trans II, 420 (1974).

- [38] M. H. Palmer and S. M. F. Kennedy, J. Chem. Soc., Perkin Trans II, 1893 (1974).
- [39] C. M. Lee and W. D. Kumler, J. Amer. Chem. Soc. 84, 571 (1962).
- [40] J. M. Foster and S. F. Boys, Rev. Mod. Phys. 32, 300 (1960).
- [41] M. H. Palmer and R. H. Findlay, J. Chem. Soc. Perkin Trans II, 1885 (1974).
- [42] G. G. Hall and J. Lennard-Jones, Proc. Roy. Soc. London A205, 357 (1951).
- [43] R. P. Messmer, J. Molec. Structure 169, 137 (1988).
- [44] Y. Aray, C. Gatti, and J. Murgich, J. Chem. Phys. **101**, 9800 (1994).
- [45] M. H. Palmer, to be published.
- [46] D. B. Neumann and J. W. Moskowitz, J. Chem. Phys. 50, 2216 (1969).
- [47] T-K. Ha and C. T. O'Konski, J. Chem. Phys. 51, 460 (1969).